53 research outputs found

    Towards Optimized and Reconstructable Sampling Inspection of Pipe Integrity for Improved Efficiency of NDT

    Full text link

    Planning stable and efficient paths for articulated mobile robots on challenging terrains

    Full text link
    An analytical strategy to generate stable paths for a reconfigurable vehicle while also meeting additional navigational objectives is herein proposed. The work is motivated by robots traversing over challenging terrains during search and rescue operations, such as those equipped with manipulator arms and/or flippers. The proposed solution looks at minimizing the length of the traversed path and the energy expenditure in changing postures, yet also accounts for additional constraints in terms of sensor visibility (i.e arm configurations close to those orthogonal to the horizontal global plane which can afford a wider sensor view) and traction (i.e. flipper angles that provide the largest trackterrain interaction area). The validity of the proposed planning approach is evaluated with a multitracked robot fitted with flippers and a range camera at the end of a manipulator arm while navigating over two challenging 3D terrain data sets: one in a mock-up urban search and rescue arena (USAR), and a second one from a publicly available quasi-outdoor rover testing facility (UTIAS)

    Dynamic bayesian networks for learning interactions between assistive robotic walker and human users

    Full text link
    Detection of individuals intentions and actions from a stream of human behaviour is an open problem. Yet for robotic agents to be truly perceived as human-friendly entities they need to respond naturally to the physical interactions with the surrounding environment, most notably with the user. This paper proposes a generative probabilistic approach in the form of Dynamic Bayesian Networks (DBN) to seamlessly account for users attitudes. A model is presented which can learn to recognize a subset of possible actions by the user of a gait stability support power rollator walker, such as standing up, sitting down or assistive strolling, and adapt the behaviour of the device accordingly. The communication between the user and the device is implicit, without any explicit intention such as a keypad or voice.The end result is a decision making mechanism that best matches the users cognitive attitude towards a set of assistive tasks, effectively incorporating the evolving activity model of the user in the process. The proposed framework is evaluated in real-life condition. © 2010 Springer-Verlag Berlin Heidelberg

    Intention driven assistive wheelchair navigation

    Full text link
    This paper presents an intelligent decision-making agent to assist wheelchair users in their daily navigation activities. The system has the ability to predict the users intended destination at a larger scale, that of a typical office or home arena. This system relies on minimal user input - obtained from a standard wheelchair joystick - in conjunction with a learned Partially Observable Markov Decision Process (POMDP), to estimate and subsequently aid in driving the user to the destination. The projection is constantly being updated, allowing for true user-platform integration. This shifts users focus from fine motor-skilled control to coarse guidance, broadly intended to convey intention. Successful simulation and experimental results on a real automated wheelchair platform demonstrate the validity of the approach

    Probabilistic stable motion planning with stability uncertainty for articulated vehicles on challenging terrains

    Full text link
    © 2015, Springer Science+Business Media New York. A probabilistic stable motion planning strategy applicable to reconfigurable robots is presented in this paper. The methodology derives a novel statistical stability criterion from the cumulative distribution of a tip-over metric. The measure is dynamically updated with imprecise terrain information, localization and robot kinematics to plan safety-constrained paths which simultaneously allow the widest possible visibility of the surroundings by simultaneously assuming highest feasible vantage robot configurations. The proposed probabilistic stability metric allows more conservative poses through areas with higher levels of uncertainty, while avoiding unnecessary caution in poses assumed at well-known terrain sections. The implementation with the well known grid based A* algorithm and also a sampling based RRT planner are presented. The validity of the proposed approach is evaluated with a multi-tracked robot fitted with a manipulator arm and a range camera using two challenging elevation terrains data sets: one obtained whilst operating the robot in a mock-up urban search and rescue arena, and the other from a publicly available dataset of a quasi-outdoor rover testing facility

    Infrastructure robotics: Research challenges and opportunities

    Full text link
    Infrastructure robotics is about research on and development of methodologies that enable robotic systems to be used in civil infrastructure inspection, maintenance and rehabilitation. This paper briefly discusses the current research challenges and opportunities in infrastructure robotics, and presents a review of the research activities and projects in this field at the Centre for Autonomous Systems, University of Technology Sydney

    High Precision GPS Aided In-pipe Distance Calibration For Satellite Image-based Pipeline Mapping

    Full text link
    Asset management and pipe condition assessment (CA) activities in the water industry usually require locating buried pipes accurately to minimise inspection and maintenance costs. A typical challenge in practice is locating an anomaly detected by an in-pipe inspection tool from aboveground in order to dig up a pipe for replacement. Accumulated in-pipe errors over longer distances in particular can easily lead to selecting the wrong pipe section for further investigation or exhumation. In fact, some in-pipe CA providers suggest utility personnel dig up a number of sections of pipe around the suggested location so as to ensure finding the target section. In this paper we propose a mechanism to accurately correlate a 3D pipeline profile built from GPS surveying results of aboveground pipeline features with in-pipe chainage distances, so as to establish an accurate link between above-ground GPS coordinates and inpipe distance measurements. This approach naturally characterises and corrects for some of the most prominent in-pipe chainage measurement errors that can lead to uncertainties about the reported location of a buried pipeline from above-ground. The detailed pipeline information can then be projected onto satellite imagery as an accurate easy-to-understand reference for efficient decision making

    An Audio-visual Solution to Sound Source Localization and Tracking with Applications to HRI

    Full text link
    Robot audition is an emerging and growing branch in the robotic community and is necessary for a natural Human-Robot Interaction (HRI). In this paper, we propose a framework that integrates advances from Simultaneous Localization And Mapping (SLAM), bearing-only target tracking, and robot audition techniques into a unifed system for sound source identification, localization, and tracking. In indoors, acoustic observations are often highly noisy and corrupted due to reverberations, the robot ego-motion and background noise, and possible discontinuous nature of them. Therefore, in everyday interaction scenarios, the system requires accommodating for outliers, robust data association, and appropriate management of the landmarks, i.e. sound sources. We solve the robot self-localization and environment representation problems using an RGB-D SLAM algorithm, and sound source localization and tracking using recursive Bayesian estimation in the form of the extended Kalman Filter with unknown data associations and an unknown number of landmarks. The experimental results show that the proposed system performs well in the medium-sized cluttered indoor environment

    Non-destructive evaluation of ferromagnetic material thickness using Pulsed Eddy Current sensor detector coil voltage decay rate

    Full text link
    © 2018 Elsevier Ltd A ferromagnetic material thickness quantification method based on the decay rate of the Pulsed Eddy Current sensor detector coil voltage is proposed. An expression for the decay rate is derived and the relationship between the decay rate and material thickness is established. Pipe wall thickness estimation is done with a developed circular sensor incorporating the proposed method, and results are evaluated through destructive testing. The decay rate feature has a unique attribute of being lowly dependent on properties such as sensor shape and size, and lift-off, enabling the method to be usable with any detector coil-based sensor. A case study on using the proposed method with a commercial sensor is also presented to demonstrate its versatility
    corecore